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Weighted norm inequalities for multilinear Fourier multipliers with mixed norm

Abstract: Weighted norm inequalities for multilinear Fourier multipliers satisfying Sobolev regularity with mixed norm are discussed. Our result can
be understood as a generalization of the result by Fujita and Tomita [4] by using the Lr-based Sobolev space, 1 < r ≤ 2 with mixed norm.

1 Introduction and main result

Let n ∈ N and let S(Rn) be the Schwartz class of all rapidly decreasing smooth functions.
Also, let N be a natural number, N ≥ 2 and let f1, . . . , fN ∈ S(Rn). For m ∈ L∞(RNn),
the N -linear Fourier multiplier operator Tm is defined by

Tm(f1, . . . , fN )(x) =
1

(2π)Nn

∫

(Rn)N
eix·(ξ1+···+ξN )m(ξ)f̂1(ξ1) . . . f̂N (ξN ) dξ,

where x ∈ Rn, ξ = (ξ1, . . . , ξN ) ∈ (Rn)N and dξ = dξ1 . . . dξN . Let Ψ be a function in
S(Rd) satisfying

suppΨ ⊂
{
ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2

}
,

∑

k∈Z
Ψ(ξ/2k) = 1, ξ ∈ Rd \ {0}. (1.1)

We set
mj(ξ1, . . . , ξN ) = m(2jξ1, . . . , 2

jξN )Ψ(ξ1, . . . , ξN ), j ∈ Z,
where Ψ is as in (1.1) with d = Nn. By ∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w), we denote the
smallest constant C satisfying

∥Tm(f1, . . . , fN )∥Lp(w) ≤ C
N∏

i=1

∥fi∥Lpi (wi), f1, . . . , fN ∈ S(Rn).

Function spaces will be defined in Section 2.
In the unweighted case, Tomita [13] proved a Hörmander type multiplier theorem for

multilinear operators, namely, if s > Nn/2, then

∥Tm∥Lp1 (Rn)×···×LpN (Rn)→Lp(Rn) ! sup
j∈Z

∥mj∥H2
s (RNn)

for 1 < p1, . . . , pN , p < ∞ satisfying 1/p1 + · · · + 1/pN = 1/p. Here H2
s (RNn) is the

L2-based Sobolev space of usual type. Grafakos and Si [7] extended this result to the
case p ≤ 1 by using the Lr-based Sobolev space, 1 < r ≤ 2. For further results in this
direction, see [6, 10, 11, 5]. Let 1 < p1, . . . , pN < ∞ and 1/p1 + · · · + 1/pN = 1/p. In
the weighted case, Fujita and Tomita [4] proved that if n/2 < si ≤ n, pi > n/si and
wi ∈ Apisi/n for all i = 1, . . . , N , then

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ! sup
j∈Z

∥mj∥H2
s⃗ (RNn), (1.2)

where w = wp/p1

1 . . . wp/pN

N and H2
s⃗ (RNn) denotes the L2-based Sobolev space of product

type. This result can also be obtained from another approach of [8]. See [9, 1] for the
endpoint cases.

The following is our main result which can be understood as a generalization of the
result by Fujita and Tomita [4]. Taking ri = 2 for all i = 1, . . . , N in (1.3), we have
(1.2). Si [12] obtained some weighted estimates for multilinear Fourier multipliers with
the Lr-based Sobolev regularity, 1 < r ≤ 2.

Theorem 1.1. Let 1 < p1, . . . , pN < ∞, 1/p1 + · · · + 1/pN = 1/p, r⃗ = (r1, . . . , rN ) ∈
(1, 2]N , rN ≤ rN−1 ≤ · · · ≤ r2 ≤ r1, s⃗ = (s1, . . . , sN ) ∈ RN and n/ri < si ≤ n for all
i = 1, . . . , N . Assume

pi > n/si and wi ∈ Apisi/n for all i = 1, . . . , N.

Then
∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ! sup

j∈Z
∥mj∥H r⃗

s⃗ ((Rn)N ), (1.3)

where w = wp/p1

1 · · ·wp/pN

N and H r⃗
s⃗ ((Rn)N ) is the Sobolev space of product type with

mixed norm which will be defined in Section 2.

2 Preliminaries

2.1 Notations

An operator T acting on N -tuples of functions defined on Rn is called the N -linear
operator. For two nonnegative quantities A and B, the notation A ! B means that
A ≤ CB for some unspecified constant C > 0 independent of A and B, and the notation
A ≈ B means that A ! B and B ! A. If x ∈ Rd, we denotes (1 + |x|2)1/2 by ⟨x⟩.
Let S(Rn) and S ′(Rn) be the Schwartz class of all rapidly decreasing smooth functions
and tempered distributions, respectively. We define the Fourier transform Ff and the
inverse Fourier transform F−1f of f ∈ S(Rn) by

Ff(ξ) = f̂(ξ) =

∫

Rn

e−ix·ξf(x) dx and F−1f(x) =
1

(2π)n

∫

Rn

eix·ξf(ξ) dξ

(See, for example, [3, Chapter 1]). To distinguish linear and multilinear operators, for
m ∈ L∞(Rn), we denote the linear Fourier multiplier operator by m(D) defined by

m(D)f(x) = F−1
[
m(ξ)f̂(ξ)

]
(x) =

1

(2π)n

∫

Rn

eix·ξm(ξ)f̂(ξ) dξ

for f ∈ S(Rn), where x, ξ ∈ Rn. Let 0 < p < ∞ and w ≥ 0. The weighted Lebesgue
space Lp(w) consists of all measurable functions f on Rn such that

∥f∥Lp(w) = ∥f∥Lp(Rn, w(x) dx) =

(∫

Rn

|f(x)|pw(x) dx
)1/p

< ∞.

Let 1 < p < ∞. We say that a weight w belongs to the Muckenhoupt class Ap if

sup
B

(
1

|B|

∫

B
w(x) dx

)(
1

|B|

∫

B
w(x)1−p′

dx

)p−1

< ∞,

where the supremum is taken over all balls B in Rn, |B| is the Lebesgue measure of B,
and p′ is the conjugate exponent of p, that is, 1/p+ 1/p′ = 1. It is well known that the
Hardy-Littlewood maximal operator M is bounded on Lp(w) if and only if w ∈ Ap([3,
Theorem 7.3]).

2.2 Function spaces

To distinguish spaces of usual type and mixed type concerning integrable indices, we
use RNn and (Rn)N , respectively.

We recall the definition of Lp-spaces with mixed norm ([2]). Let p⃗ = (p1, . . . , pN ) ∈
(0,∞)N . The Lebesgue space with mixed norm Lp⃗((Rn)N ) consists of all measurable
functions F on RNn such that

∥F∥Lp⃗((Rn)N ) =
∥∥∥F (x1, . . . , xN )∥Lp1 (Rn, dx1) · · ·

∥∥
LpN (Rn, dxN )

< ∞,

where (x1, · · · , xN ) ∈ (Rn)N and dxi is the Lebesgue measure with respect to the
variable xi for all i = 1, . . . , N . In particular, if each pi is equal to p ∈ (0,∞),
then we have ∥F∥Lp⃗((Rn)N ) = ∥F∥Lp(RNn). For r⃗ = (r1, . . . , rN ) ∈ (1,∞)N and

s⃗ = (s1, . . . , sN ) ∈ RN , the norm of the Sobolev space of product type with mixed
norm H r⃗

s⃗ ((Rn)N ) for F ∈ S ′(RNn) is defined by

∥F∥H r⃗
s⃗ ((Rn)N ) =

∥∥∥F−1
[
⟨ξ1⟩s1 · · · ⟨ξN ⟩sN F̂ (ξ1, . . . , ξN )

]∥∥∥
Lr⃗((Rn)N )

,

where ⟨ξi⟩ = (1 + |ξi|2)1/2 for i = 1, . . . , N and F−1 is the inverse Fourier transform
of RNn. Taking ri = 2 for all i = 1, · · · , N , we obtain the L2-based Sobolev space of
product type H2

s⃗ (RNn), namely, ∥F∥H2
s⃗ (RNn) = ∥⟨ξ1⟩s1 · · · ⟨ξN ⟩sN F̂ (ξ1, . . . , ξN )∥L2(RNn).

It should be remarked that if si = s/N, s ≥ 0 for all i = 1, · · · , N ,

H2
s (RNn) ↪→ H2

s⃗ (RNn),

whereH2
s (RNn) is the L2-based Sobolev space of usual type, that is to say, ∥F∥H2

s (RNn) =

∥⟨ξ⟩sF̂∥L2(RNn), where ξ ∈ RNn.
For p⃗ = (p1, . . . , pN ) ∈ [1,∞)N and s⃗ = (s1, . . . , sN ) ∈ RN , the norm of the weighted

Lebesgue space with mixed norm Lp⃗
s⃗((Rn)N ) for F ∈ S ′(RNn) is also defined by

∥F∥Lp⃗
s⃗((Rn)N ) =

∥∥∥∥F (x1, . . . , xN )∥Lp1 (Rn,⟨x1⟩s1dx1)
. . .

∥∥∥
LpN (Rn,⟨xN ⟩sN dxN )

,

where (x1, . . . , xN ) ∈ (Rn)N and ⟨xi⟩si = (1 + |xi|2)si/2 for all i = 1, . . . , N . For

accuracy, we will frequently write L(p1,··· ,pN )
(s1,··· ,sN ) ((R

n)N ) instead of Lp⃗
s⃗((Rn)N ) in the proof.

For p⃗ = (p1, . . . , pN ), q⃗ = (q1, . . . , qN ) ∈ (0,∞)N , we shall agree that if a ∼ b is a
relation between numbers a and b, then p⃗ ∼ q⃗ means that pi ∼ qi holds for each i.

3 Lemmas

In this section, we give lemmas which play important roles in the proof of Theorem 1.1.
The proof of the following lemma is based on the argument of [14, Proposition 1.3.2] or
[13, Lemma 3.3].

Lemma 3.1. Let r > 0, p⃗ = (p1, · · · , pN ), q⃗ = (q1, · · · , qN ) ∈ [1,∞)N , s⃗ =
(s1, · · · , sN ) ∈ (R≥0)N and p⃗ ≤ q⃗. Then, the estimate
∥∥∥⟨ξ1⟩s1 . . . ⟨ξN ⟩sN F̂ (ξ1, . . . , ξN )

∥∥∥
Lq⃗((Rn)N )

!
∥∥∥⟨ξ1⟩s1 . . . ⟨ξN ⟩sN F̂ (ξ1, . . . , ξN )

∥∥∥
Lp⃗((Rn)N )

holds, where suppF ⊂ {ξ = (ξ1, . . . , ξN ) ∈ (Rn)N : |ξ| ≤ r}.

The following is a key lemma in the proof of Theorem 1.1. Fujita and Tomita [4,
Proposition A.2] proved (1.2) by using the fact that H2

s⃗ (RNn) is a multiplication algebra
when si > n/2 for all i = 1, · · · , N . Instead of this, we shall use the following lemma.

Lemma 3.2. Let N0 ∈ N, r⃗ = (r1, . . . , rN ) ∈ (1, 2]N , rN ≤ rN−1 ≤ · · · ≤ r2 ≤ r1,
s⃗ = (s1, . . . , sN ) ∈ RN , n/ri < si ≤ n and n/si < qi < ri for all i = 1, . . . , N . Then,
the estimate

∥∥F
[
m(2j ·)Ψ(·/2k)

]∥∥
L

(q′1,...,q′
N

)

(s1q′1,...,sNq′
N

)
((Rn)N )

! sup
j∈Z

∥mj∥H r⃗
s⃗ ((Rn)N )

holds for all j ∈ Z, −N0 ≤ k ≤ N0 and m ∈ H r⃗
s⃗ ((Rn)N ).
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